Relational Database

 

A relational database matches data by using common characteristics found within the data set. The resulting groups of data are organized and are much easier for people to understand.

For example, a data set containing all the real-estate transactions in a town can be grouped by the year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be grouped by the buyer's last name; and so on.

Such a grouping uses the relational model (a technical term for this is schema). Hence, such a database is called a "relational database."

The software used to do this grouping is called a relational database management system. The term "relational database" often refers to this type of software.  This is often abbreviated to the acronym "RDBMS" within technical teams.

Relational databases are currently the predominant choice in storing financial records, manufacturing and logistical information, personnel data and much more.

 

Contents


Strictly, a relational database is a collection of relations (frequently called tables). Other items are frequently considered part of the database, as they help to organize and structure the data, in addition to forcing the database to conform to a set of requirements.

The term relational database was originally defined and coined by Edgar Codd at IBM Almaden Research Center in 1970.

Relational database theory uses a set of mathematical terms, which are roughly equivalent to SQL database terminology. The table below summarizes some of the most important relational database terms and their SQL database equivalents.

 

Relational Term SQL Equivalent
relation, base relval table
derived relval view, query result, result set
tuple row
attribute column

 

Relations or Tables


A relation is defined as a set of tuples that have the same attributes. A tuple usually represents an object and information about that object. Objects are typically physical objects or concepts. A relation is usually described as a table, which is organized into rows and columns. All the data referenced by an attribute are in the same domain and conform to the same constraints.

The relational model specifies that the tuples of a relation have no specific order and that the tuples, in turn, impose no order on the attributes. Applications access data by specifying queries, which use operations such as select to identify tuples, project to identify attributes, and join to combine relations. Relations can be modified using the insert, delete, and update operators. New tuples can supply explicit values or be derived from a query. Similarly, queries identify tuples for updating or deleting. It is necessary for each tuple of a relation to be uniquely identifiable by some combination (one or more) of its attribute values. This combination is referred to as the primary key.

 

Base and derived relations


In a relational database, all data are stored and accessed via relations. Relations that store data are called "base relations", and in implementations are called "tables". Other relations do not store data, but are computed by applying relational operations to other relations. These relations are sometimes called "derived relations". In implementations these are called "views" or "queries". Derived relations are convenient in that though they may grab information from several relations, they act as a single relation. Also, derived relations can be used as an abstraction layer.

 

Domain


A domain describes the set of possible values for a given attribute. Because a domain constrains the attribute's values and name, it can be considered constraints. Mathematically, attaching a domain to an attribute means that "all values for this attribute must be an element of the specified set."

The character data value 'ABC', for instance, is not in the integer domain. The integer value 123, satisfies the domain constraint.

 

Constraints


Constraints allow you to further restrict the domain of an attribute. For instance, a constraint can restrict a given integer attribute to values between 1 and 10. Constraints provide one method of implementing business rules in the database. SQL implements constraint functionality in the form of check constraints.

Constraints restrict the data that can be stored in relations. These are usually defined using expressions that result in a boolean value, indicating whether or not the data satisfies the constraint. Constraints can apply to single attributes, to a tuple (restricting combinations of attributes) or to an entire relation.

Since every attribute has an associated domain, there are constraints (domain constraints). The two principal rules for the relational model are known as entity integrity and referential integrity.

 

Primary Keys


A primary key uniquely defines a relationship within a database. In order for an attribute to be a good primary key it must not repeat. While natural attributes are sometimes good primary keys, Surrogate keys are often used instead. A surrogate key is an artificial attribute assigned to an object which uniquely identifies it (For instance, in a table of information about students at a school they might all be assigned a Student ID in order to differentiate them). The surrogate key has no intrinsic meaning, but rather is useful through its ability to uniquely identify a tuple.

Another common occurrence, especially in regards to N:M cardinality is the composite key. A composite key is a key made up of two or more attributes within a table that (together) uniquely identify a record. (For example, in a database relating students, teachers, and classes. Classes could be uniquely identified by a composite key of their room number and time slot, since no other class could have that exact same combination of attributes. In fact, use of a composite key such as this can be a form of data verification, albeit a weak one.)

 

Foreign keys


A foreign key is a reference to a key in another relation, meaning that the referencing tuple has, as one of its attributes, the values of a key in the referenced tuple. Foreign keys need not have unique values in the referencing relation. Foreign keys effectively use the values of attributes in the referenced relation to restrict the domain of one or more attributes in the referencing relation.

A foreign key could be described formally as: "For all tuples in the referencing relation projected over the referencing attributes, there must exist a tuple in the referenced relation projected over those same attributes such that the values in each of the referencing attributes match the corresponding values in the referenced attributes."

 

Stored procedures


A stored procedure is executable code that is associated with, and generally stored in, the database. Stored procedures usually collect and customize common operations, like inserting a tuple into a relation, gathering statistical information about usage patterns, or encapsulating complex business logic and calculations. Frequently they are used as an application programming interface (API) for security or simplicity. Implementations of stored procedures on SQL DBMSs often allow developers to take advantage of procedural extensions (often vendor-specific) to the standard declarative SQL syntax.

Stored procedures are not part of the relational database model, but all commercial implementations include them.

 

Indices


An index is one way of providing quicker access to data. Indices can be created on any combination of attributes on a relation. Queries that filter using those attributes can find matching tuples randomly using the index, without having to check each tuple in turn. Relational databases typically supply multiple indexing techniques, each of which is optimal for some combination of data distribution, relation size, and typical access pattern. B+ trees, R-trees, and bitmaps.

Indices are usually not considered part of the database, as they are considered an implementation detail, though indices are usually maintained by the same group that maintains the other parts of the database.



 

Web News

Company Blog


Search Behaviour

Posted Tuesday, 19 October 2010 at 05:58 by Andrew Liu


As an SEO provider, you have one main goal. Get your clients website to show up in search results fo...

Read more...



sm bus drivers missing in Device Manager

Posted Sunday, 18 April 2010
Updated Sunday, 24 February 2013 at 06:39 by Andrew Liu


When installing a new Windows XPinstallation, I seemingly always miss some drivers. One that trouble...

Read more...



Multiple Domains for SEO performance?

Posted Friday, 05 March 2010 at 23:13 by Andrew Liu


Online businesses and websites that cover a broad range of topics or one large topic are sometimes b...

Read more...



Tag Clouds - SEO or not?

Posted Thursday, 04 March 2010 at 04:34 by Andrew Liu


A tag cloud or word cloud is a visual depiction of tags or words related to a site, typically used t...

Read more...



Mozilla Thunderbird and Gmail IMAP Attachments Bug

Posted Wednesday, 03 March 2010 at 20:15 by Andrew Liu


I've been using Gmail since its early inception, and Iwas one of the first to utilise Gmail's IMAPfe...

Read more...



Read more blogs...